

#### Film Structures Incorporating Benefits Delivered by New Moisture Barrier HDPE

Thomas J. Schwab Lindsay Corcoran

Polyethylene Films 2013 February 5, 2013

lyondellbasell

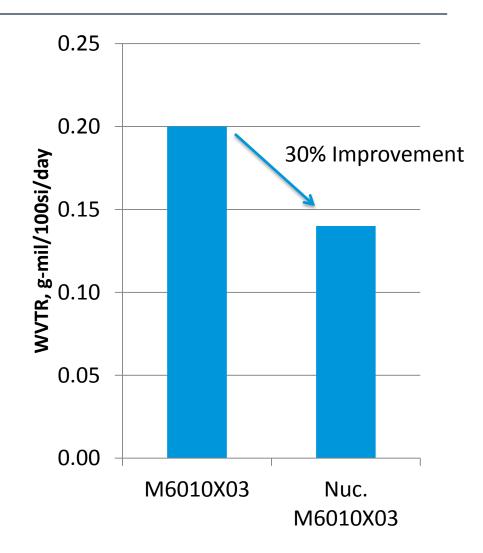
#### Introduction

- Blown film producers and users have numerous requirements for moisture barrier applications
  - Moisture barrier (Water Vapor Transmission Rate WVTR)
  - Toughness
    - Machine Direction (MD) tear, Puncture, Dart
  - -Resistance to curl
  - Film appearance
    - Dusting, melt fracture
- Resin choice, resin design, and structure design affect these various film properties

Project Goal: Determine most critical variables to optimize overall film performance depending on end-use

### Experimental

- Produce four-layer films with 1.8-mil gauge
  - Blow-up Ratio = 2.5:1; Die Gap = 95 mil


| Product       | Resin Type | Melt Index<br>(g/10 min.) | Density<br>(g/cc) | Product<br>Function |
|---------------|------------|---------------------------|-------------------|---------------------|
| UE637000      | EVA        | 3.2                       | 9% VA             | Sealant             |
| L5485         | HDPE       | 0.85                      | 0.954             | Toughness           |
| M5410         | HDPE       | 1.15                      | 0.954             | Toughness           |
| GM1210BE      | mLLDPE     | 1.0                       | 0.912             | Toughness           |
| M6010X03      | HDPE       | 2.7                       | 0.962             | Barrier             |
| Nuc. M6010X03 | HDPE       | 2.7                       | 0.962             | Barrier             |

» Nuc. M6010X03 = Nucleated M6010X03

 Film structures designed for fundamental comparison of barrier and toughness layers

# **Nucleated HDPE**

- Use of organic salt nucleator may improve WVTR of HDPE
- Nucleator changes crystal growth in polymer during cooling
- Changes in crystal orientation can create a more torturous path for water vapor
- Leads to potential improvements in barrier
  - Haze properties typically improve as well



Normalized data from 1.25-mil monolayer films

yondellbasell 4

# Film Structure Design and Comparison Groups

| Sealant Layer (15%)              | Inner Core (28%) | Outer Core (28%) | Outer Skin (29%) |  |  |
|----------------------------------|------------------|------------------|------------------|--|--|
| Location of barrier HDPE layer   |                  |                  |                  |  |  |
| UE637000                         | M6010X03         | M6010X03         | L5485            |  |  |
| UE637000                         | M6010X03         | L5485            | M6010X03         |  |  |
| UE637000                         | L5485            | M6010X03         | M6010X03         |  |  |
| Location of nucleated HDPE layer |                  |                  |                  |  |  |
| UE637000                         | Nuc. M6010X03    | Nuc. M6010X03    | L5485            |  |  |
| UE637000                         | Nuc. M6010X03    | L5485            | Nuc. M6010X03    |  |  |
| UE637000                         | L5485            | Nuc. M6010X03    | Nuc. M6010X03    |  |  |
| Type of core layer material      |                  |                  |                  |  |  |
| UE637000                         | Nuc. M6010X03    | L5485            | Nuc. M6010X03    |  |  |
| UE637000                         | Nuc. M6010X03    | M5410            | Nuc. M6010X03    |  |  |
| UE637000                         | Nuc. M6010X03    | GM1210BE         | Nuc. M6010X03    |  |  |

### Water Vapor Transmission Rate Comparison

| Inner Core (28%)                 | Outer Core (28%) | Outer Skin (29%) | Structure WVTR |  |  |  |
|----------------------------------|------------------|------------------|----------------|--|--|--|
| Location of barrier HDPE layer   |                  |                  |                |  |  |  |
| M6010X03                         | M6010X03         | L5485            | 0.175          |  |  |  |
| M6010X03                         | L5485            | M6010X03         | 0.178          |  |  |  |
| L5485                            | M6010X03         | M6010X03         | 0.166          |  |  |  |
| Location of nucleated HDPE layer |                  |                  |                |  |  |  |
| Nuc. M6010X03                    | Nuc. M6010X03    | L5485            | 0.128          |  |  |  |
| Nuc. M6010X03                    | L5485            | Nuc. M6010X03    | 0.132          |  |  |  |
| L5485                            | Nuc. M6010X03    | Nuc. M6010X03    | 0.125          |  |  |  |

#### Barrier layer location in structure has minimal effect on WVTR

### Water Vapor Transmission Rate Comparison

| Inner Core (28%)      | Outer Core (28%) | Outer Skin (29%) | Structure WVTR |
|-----------------------|------------------|------------------|----------------|
| Type of core layer ma | iterial          |                  |                |
| Nuc. M6010X03         | L5485            | Nuc. M6010X03    | 0.132          |
| Nuc. M6010X03         | M5410            | Nuc. M6010X03    | 0.132          |
| Nuc. M6010X03         | GM1210BE         | Nuc. M6010X03    | 0.162          |

#### Density of non-barrier layer affects structure WVTR significantly

# Toughness Comparison

| Inner Core (28%)                 | Outer Core (28%) | Outer Skin (29%) | MD Tear | Puncture |  |
|----------------------------------|------------------|------------------|---------|----------|--|
| Location of barrier HDPE layer   |                  |                  |         |          |  |
| M6010X03                         | M6010X03         | L5485            | 21.6    | 30.4     |  |
| M6010X03                         | L5485            | M6010X03         | 19.9    | 31.1     |  |
| L5485                            | M6010X03         | M6010X03         | 20.8    | 30.9     |  |
| Location of nucleated HDPE layer |                  |                  |         |          |  |
| Nuc. M6010X03                    | Nuc. M6010X03    | L5485            | 24.5    | 30.8     |  |
| Nuc. M6010X03                    | L5485            | Nuc. M6010X03    | 22.7    | 28.4     |  |
| L5485                            | Nuc. M6010X03    | Nuc. M6010X03    | 33.3*   | 30.6     |  |
|                                  |                  |                  |         |          |  |

\*High standard deviation Dart drop results follow similar trend.

Toughness layer location has minimal effect on toughness. However, structures usually have higher level of toughness product.



# Toughness Comparison

| Inner Core (28%)            | Outer Core (28%) | Outer Skin (29%) | MD Tear | Puncture |  |
|-----------------------------|------------------|------------------|---------|----------|--|
| Type of core layer material |                  |                  |         |          |  |
| Nuc. M6010X03               | L5485            | Nuc. M6010X03    | 22.7    | 28.4     |  |
| Nuc. M6010X03               | M5410            | Nuc. M6010X03    | 23.3    | 28.5     |  |
| Nuc. M6010X03               | GM1210BE         | Nuc. M6010X03    | 45.7    | 51.8     |  |

Dart drop results follow similar trend.

Density of toughness layer has significant effect on toughness. However, structures usually have higher level of toughness product.

lyondellbasell.com

Sealant Layer = 15% UE637000 MD Tear Units = grams; Puncture Units = Newtons



#### Curl Testing – Method

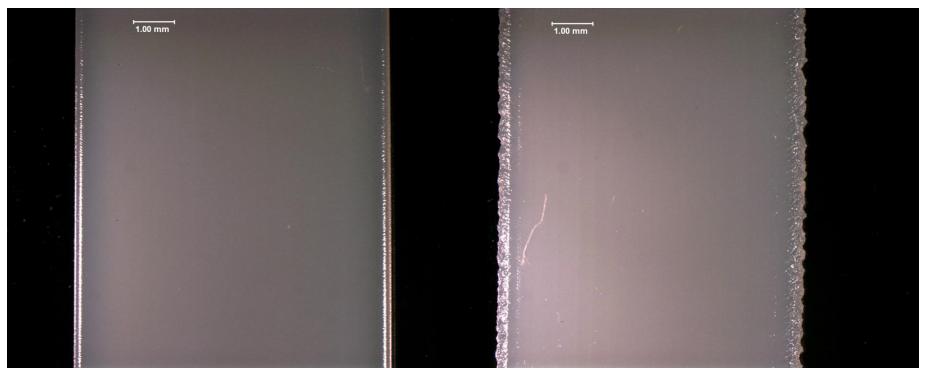
- Cut an 8x8 inch square from each material
- Cut a 4x4 inch "X" in the center of sample
- Tape the square to a piece of cardboard with the curl direction facing up
- Let samples sit for 20 hours
- Visually quantify the amount of curl in both the MD and TD direction
  - -Slight Curl  $\leq 45^{\circ}$
  - -Curl  $\leq$  90 °
  - Severe Curl ≥ 180 °



### Curl Comparison

| Inner Core (28%)                 | Outer Core (28%) | Outer Skin (29%) | MD<br>Curl | TD<br>Curl | Direction  |
|----------------------------------|------------------|------------------|------------|------------|------------|
| Location of barrier HDPE layer   |                  |                  |            |            |            |
| M6010X03                         | M6010X03         | L5485            | Slight     | None       | Outer Skin |
| M6010X03                         | L5485            | M6010X03         | Slight     | None       | Sealant    |
| L5485                            | M6010X03         | M6010X03         | Curl       | None       | Sealant    |
| Location of nucleated HDPE layer |                  |                  |            |            |            |
| Nuc. M6010X03                    | Nuc. M6010X03    | L5485            | Severe     | Slight     | Outer Skin |
| Nuc. M6010X03                    | L5485            | Nuc. M6010X03    | Slight     | None       | Sealant    |
| L5485                            | Nuc. M6010X03    | Nuc. M6010X03    | Severe     | Curl       | Sealant    |
| Type of core layer material      |                  |                  |            |            |            |
| Nuc. M6010X03                    | L5485            | Nuc. M6010X03    | Slight     | None       | Sealant    |
| Nuc. M6010X03                    | M5410            | Nuc. M6010X03    | Curl       | Slight     | Sealant    |
| Nuc. M6010X03                    | GM1210BE         | Nuc. M6010X03    | Curl       | Slight     | Sealant    |

#### **Curl Test Conclusions**


- Balanced structures show less curl
- Nucleated materials curl more than non-nucleated materials
- Films tend to curl away from the nucleated layer
- Films generally curl towards sealant layer
  - -Nucleated layer effect dominates curl more than sealant

### Film Appearance Comparison

- Use of barrier products in the outer layer of a multi-layer structure requires minimal dusting and low melt fracture
- Compare M6010X03 to competitive material
  - -Lab scale testing due to limited sample
- Testing Method
  - Capillary Rheometer (ROSAND RH7 Flowmaster)
    - Shear rates between 50 to 800 s<sup>-1</sup>
    - Temperature 190°C
  - -Slit Die
    - 34 mm in length with a cross sectional area of 6 mm x 0.5 mm

#### Melt Fracture Comparison

#### • Representative sample at 300 s<sup>-1</sup>



#### M6010X03

#### **Competitive Material**

#### Smooth film edge indicates little melt fracture

### Conclusions / Summary

- Location of barrier and HDPE toughness layers does not seem to have significant effect on WVTR or film toughness at these layer distributions
- Use of lower density toughness layers leads to poorer WVTR, but improved toughness
- Balanced structures show less curl
- Nucleated films curl more than non-nucleated films
- M6010X03 may be used in the skin layer due to low melt fracture

Performance optimization for these key properties may be achieved through modifications to layer distribution

#### **Disclaimers**

Before using a product sold by a company of the LyondellBasell family of companies, users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. SELLER MAKES NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY WARRANTY) OTHER THAN AS SEPARATELY AGREED TO BY THE PARTIES IN A CONTRACT.

LyondellBasell prohibits or restricts the use of its products in certain applications. For further information on restrictions or prohibitions of use, please contact a LyondellBasell representative.

Users should review the applicable Safety Data Sheet before handling the product.

Adflex, Adsyl, Alathon, Catalloy, Clyrell, Lupotech T, Petrothene, Plexar, Pro-fax, Starflex and Ultrathene are trademarks owned or used by the LyondellBasell family of companies. Adflex, Adsyl, Alathon, Clyrell, Lupotech, Petrothene, Plexar, Pro-fax, Starflex and Ultrathene are registered in the U.S. Patent and Trademark Office.

lvoodellbasell

16

© LyondellBasell Industries Holdings, B.V. 2015

lyondellbasell.com